
DyRef: Dynamic Reflection Framework
via Graph-Based Complexity for Robotic Planning

Anonymous Author(s)

Abstract— Robotic planning tasks often involve diverse com-
plexities, which make adaptive improvement through reflec-
tion particularly challenging. Existing LLM-based approaches
typically rely on fixed routines, lacking the ability to adjust
to task-specific complexity and often leading to redundant
reflections. To address this, we propose DyRef, a dynamic
reflection framework that models tasks as a Diagnostic Graph,
measures tasks complexity through structural factors, and
routes them through a Reflection Toolkit via a learned Routing
Policy network. This design enables tailored reflection strategies
that reduce redundancy and improve reasoning efficiency.
Experiments in AlfWorld and on real-world robotic platforms
show that DyRef improves success rates by 38.0% reducing
redundant reflections by 64.4%. Project webpage (no author
information) : https://DyRef.github.io/

I. INTRODUCTION

Recent advancements in robotic task planning have in-
creasingly leveraged large language models (LLMs) due
to their ability to generate coherent multi-step plans [1],
[2]. While LLM-based planning has proven effective in
complex tasks, it still suffers from issues like hallucinations
and logical inconsistencies [3]. To address these limitations,
reflection mechanisms have emerged [4], [5], allowing robots
to revisit and correct past decisions, transforming open-loop
systems into more reliable closed-loop systems. However, ex-
isting reflection methods predominantly rely on pre-defined
prompts or fixed routines, which restrict them to a narrow
set of heuristics. This one-size-fits-all approach overlooks the
diverse characteristics of tasks, causing reflection to be mis-
aligned with the underlying task complexity and leading to
either insufficient reflection or unnecessary overthinking [6].

Building on these observations, recent studies [7], [8]
attempt to quantify task complexity and then decide the
reflection level (e.g., simple vs. complex) based on this
assessment (see Figure 1). This improves over fixed routines
by allowing coarse adaptation to task complexity, but in
real-world scenarios, task complexity is inherently multi-
dimensional, involving aspects such as long-horizon depen-
dencies, spatial reasoning, or intricate object interactions [9].
A single complexity metric fails to capture these diverse
aspects, leading to inappropriate reflection, unnecessary over-
head, and the accumulation of errors [10]. We therefore ask:
How can a robot dynamically adapt reflection with a
multi-dimensional understanding of task complexity?

To overcome such limitations, consider the medical do-
main. A doctor evaluates symptoms from multiple per-
spectives to build a comprehensive understanding of the
illness. Based on this diagnosis, the doctor formulates a
treatment strategy, which specifies how different tools—such

Fig. 1. Compared with existing methods, DyRef dynamically evaluates
task structures and failure trajectories using multi-dimensional complexity
measures derived from a graph representation, and adaptively selects and
routes appropriate reflection tools via a routing policy network.

as medicines or procedures—should be selected and com-
bined. In a similar vein, effective reflection requires strategies
that adaptively organize tools based on a multi-dimensional
understanding of task complexity.

This raises two main challenges: Lack of structured
representation of task complexity. Effective reflection de-
pends on understanding why a task is complex—whether
due to long horizons, spatial dispersion, or intricate ob-
ject interactions. Such aspects are not independent; they
are intertwined and often compound each other. Without a
structured representation that disentangles these dimensions,
existing methods resort to heuristic or uniform reflection,
overlooking the actual sources of complexity. This mismatch
makes reflection either too shallow to resolve real errors or
unnecessarily heavy, wasting computational budget. Besides,
selecting the effective reflection strategy remains non-
trivial. The introduction of a multi-dimensional state rep-
resentation creates a new problem: how to map this high-
dimensional complexity to the optimal reflection strategy.
This is a distinct challenge from prior heuristic selection
rules, as it requires reasoning over a complex state space
to balance efficacy and computational cost.

Instead of treating complexity as a flat set of statistics, we
adopt a graph-based representation because tasks inherently
involve heterogeneous entities (e.g., objects, actions, rooms)
and multiple relation types (e.g., spatial, causal, functional).
Graphs provide a natural and powerful abstraction to unify
these elements, explicitly capturing dependencies, spatial
arrangements, and interaction constraints—the very dimen-
sions that constitute task complexity. This makes it possible
to derive interpretable indicators of complexity along distinct

https://DyRef.github.io/


dimensions from a single, structured representation.
Grounded in this intuition, we propose DyRef, a Dynamic

Reflection Framework via Graph-Based Complexity Mea-
surement. First, we convert natural language task descriptions
into a Diagnostic Graph that explicitly captures task goal,
observation, and action trajectories through typed nodes and
structural edges. From this graph we derive four Complex-
ity Factors—Dependency, Spatial, Interaction, and Struc-
ture—which correspond to long horizons, wide spatial scope,
reliance on appliance knowledge, and overall structure. Sec-
ond, we introduce a Routing Policy network, trained in a
self-supervised manner, that maps the factor vector to the
most suitable tool from our Reflection Toolkit. Depending
on the complexity, the Routing Policy adaptively assembles
tools such as Key Rule Extraction, Ambiguity Constraint,
Experience Summary, or Lesson Pool, forming a tailored
reflection pipeline. By aligning reflection strategies with the
diagnosed complexity, our method reduces reflection redun-
dancy, prevents irrelevant error propagation, and improves
overall planning success. Our contributions are threefold:

1) We provide a structured formalization of task com-
plexity, introducing the Diagnostic Graph and deriving
four Complexity Dependency, Spatial, Interaction, and
Structure make task complexity explicit and com-
putable.

2) To the best of our knowledge, this is the first reflection
framework that dynamically adapts its strategies based
on multi-dimensional complexity modeling, enabling
robots to plan beyond static, heuristic-driven reflection.

3) We validate our approach through extensive experi-
ments on simulated household benchmarks and real
robotic platforms, showing that it significantly im-
proves planning efficiency and success rates compared
to uniform reflection baselines.

II. RELATED WORKS

A. LLMs for Task Planning

LLMs have been explored as planners for robotic tasks
due to their reasoning and language understanding ability.
Early work framed planning as sequence modeling with GPT-
style policies [11], while ReAct [1] integrated reasoning
with interaction. Other directions exploit program synthesis,
generating code-like plans for greater reliability [12], [13],
[14]. In embodied domains, methods such as SayCan [15]
and LLM-Planner [16], [17] ground planning in robot affor-
dances, ensuring that generated actions are executable. These
studies show that LLMs can produce coherent plans, but
they largely assume fixed reasoning capacity. When errors
accumulate in long-horizon tasks, they lack mechanisms
for explicit self-correction, motivating subsequent work on
reflection.

B. Reflection for Robotic Task Planning

To address such errors, self-reflection has been intro-
duced, where agents iteratively revise plans with feedback.
Representative methods include Reflexion [4], Expel [5],
and approaches that build structured knowledge [18] or

combine reflection with search [19], [20], [21]. A newer
line explores complexity-aware reflection [10], [8], [7], for
example FCRF [7], which adapts reflection level based on
task complexity. Yet such approaches typically rely on a
single metric, limiting their ability to capture the multi-
dimensional nature of task complexity. Thus, while reflection
improves robustness, most methods lack a structured way
to formalize complexity itself. This gap suggests the need
for representations that can expose multi-dimensional task
factors—a role naturally suited to graph structures.

C. Graph-based Representations for Task Reasoning
Graph structures have been widely explored to capture

relational and compositional aspects of tasks. In embodied
AI, scene graphs [22], [23] and object-centric graphs [24]
encode entities and relations for affordance reasoning, while
graph neural networks propagate dependencies across nodes
to support long-horizon planning [25], [26]. These works
highlight the value of structured representations for reasoning
over dependencies. However, graphs are usually treated as
static encodings or backbones, not as diagnostic tools that
drive adaptive error correction. In contrast, our Diagnostic
Graph derives explicit Complexity Factors and directly in-
forms the dynamic selection of reflection modules, enabling
complexity-aware adaptation in robotic planning.

In summary, LLMs have shown promise in task planning,
reflection mechanisms enhance robustness, and graphs offer
structured reasoning. However, prior work either treats task
complexity implicitly or reduces it to a single metric, leaving
no principled way to diagnose why tasks fail and how
reflection should adapt. We address this gap by introducing a
Diagnostic Graph that derives multi-dimensional Complexity
Factors, enabling reflection to be both targeted and adaptive
in robotic planning.

III. PRELIMINARIES
A. Planning Framework

A task can be described as a tuple ⟨G,S,O, T ,A⟩, where
G denotes the task goal, S is the set of all possible states, O
represents the observation space, A is the set of candidate
actions, and T : S × A → S is the transition function that
models state changes after executing an action. The aim of
planning is to search for a decision policy, expressed as a
sequence of actions, that drives the system from an initial
state toward the desired goal state. In LLM-based planning
practice, the above task information is typically provided
through a natural language description D.

B. Self-Reflection Process in LLM-based Planning
Following Reflexion [4], we define Reflection as an iter-

ative optimization process driven by environment feedback.
At each trial t, the planner generates a trajectory τt through
interaction with the environment, which returns a scalar
outcome rt = ME(τt). Reflection then transforms the pair
(τt, rt) into a verbal feedback summary srt = Mref(τt, rt),
which is stored in memory mem to refine the decision policy
in subsequent trials. The loop (τt, rt, srt) continues until
environment feedback indicates task success.



Task Description
 

Your task is to: clean cup of kitchen to 
desk.You are in the middle of a room. 
Looking quickly around you, you see....,  
a toaster 1.

Task Parser

Trajectory
 

> go to kitchen> go to drawer 1> go 
to cabinet 1> Take a mug 1 from 
cabinet 1 
> go to sinkbasin 1> go to toilet 1
.......(Out of steps)

LLM Planner
Diagnostic Graph

Input
 Trajectory Subgraph 

 Goal Subgraph 

 Scene Subgraph 

Routing Policy

Root

Rooms

Assets

Objects

Root

Unknown

Cup

Sinkbasin

wash
room

Mug Knife Cloth

TableUnknown

Affordance

1. Placeable

3. Cleanable

Structure Factor

Dependency Factor

Interaction Factor

Spatial Factor

+

0.6
0.7

0.3

0.8

Toolkit

Hold(Cup) Cleaned_by(Cup, Sinkbasin)

Environment

Action Observation

Go to
kitchen

Grab
Mug

Go to
sinkbasin1

Out of
steps

......

Spport for 
new tools

T1 T2 T3 T4

��푡푟��푡

��푒푝푒��

���푡푒푟��푡

��푝�푡���

Sinkbasin

Affordance

1. Placeable

3. Cleanable

πθ

 Key Rule
Extraction

Ambiguity 
Constraint

Experience 
Summary

Lesson 
Pool

Complexity Factors

kitchen

Arrived(kitchen)

Achieve

invovle invovle invovle

Next Trajectory: > go to cabinet 12 > go to 
cabinet13 > go to shelf > take cup from shelf > 
go to sinkbasin > clean cup > go to desk > 
move cloth to desk

Refined Plan：
Success!

Extract Measure Route Rvise
Cup not on drawer 1 ,drawer 2,..You need 
to go to sinkbasin.No additional..Mug is not 
Cup that you need,You should...

Dynamic Reflection

Fig. 2. Overview of the proposed DyRef framework. DyRef dynamically allocates reflection strategy according to task complexity. The pipeline consists
of three components: (i) a hierarchical Diagnostic Graph that encodes task structure from descriptions and execution trajectories; (ii) four topological
Complexity Factors (Dependency, Interaction, Spatial, Structure) derived from the graph, providing a structured representation of task complexity; (iii) a
Routing Policy that leverages these factors to select tools from the Reflection Toolkit, enabling adaptive reflection and plan revision.

IV. METHODOLOGY

In this section, we detail our proposed framework, DyRef.
As illustrated in Figure 2, DyRef integrates task repre-
sentation, complexity measurement, and adaptive reflection
into a unified pipeline. Specifically, it comprises three core
components: (i) a hierarchical Diagnostic Graph that encodes
task structure from descriptions and execution trajectories;
(ii) four topological Complexity Factors extracted from the
graph, which quantify different aspects of task complexity in
an interpretable manner; (iii) a Routing Policy network that
maps these factors to tools in the Reflection Toolkit, enabling
tailored reflection strategies and efficient plan revision.

A. Diagnostic Graph

Reflection requires structured reasoning, while text-only
representations obscure relations among actions, goals, and
states. We therefore introduce the Diagnostic Graph Gt, a
directed typed multigraph, constructed by a deterministic
parsing pipeline: Gt = Parse(D, τt, rt), where D is the
task description, τt is the execution trajectory, and rt is the
environment feedback. The Parse function is implemented
through rule-based entity extraction and event matching,
which map task texts into goal predicates, execution logs
into action nodes with temporal edges, and environment ob-
servations into scene nodes with spatial/functional relations.

The resulting graph is decomposed into three coupled
subgraphs: (1) the Trajectory Subgraph Gtraj

t , where nodes
are executed actions and edges encode their temporal order
as well as causal failures; (2) the Goal Subgraph Ggoal

t , where
nodes denote logical predicates and edges capture their de-
pendency relations; and (3) the Scene Subgraph Gscene

t , which
hierarchically organizes rooms, assets, and objects, with
edges encoding spatial containment (room–asset–object), and
cross-links to the goal nodes when entities are involved in
predicates. Each node additionally carries attributes such as
state (e.g., on/off), affordances (e.g., openable, heatable).

By jointly modeling temporal order, logical dependencies,
spatial hierarchy, and functional relations, these subgraphs
capture the core dimensions of task complexity—temporal
dependencies, spatial arrangements, and object interac-
tions—forming a grounded basis for adaptive reflection.

B. Graph-based Complexity Factors

Based on Diagnostic Graph, we extract four interpretable
Complexity Factors, aligned with classical graph-theoretic
descriptors: path-based, coverage-based, neighborhood-
based, and high-order structural features. These factors pro-
vide simple yet interpretable signals of task complexity while
remaining computationally tractable.

a) Dependency factor Fdepend: This factor corresponds
to path-based complexity, measuring the length of the
longest dependency chain in the goal subgraph Ggoal

t . A
longer dependency path indicates deeper reasoning horizon
and higher temporal complexity:

Fdepend = max
p∈P(Ggoal

t )
|p|, (1)

where P(Ggoal
t ) denotes the set of all dependency paths and

|p| their length.
b) Spatial factor Fspatial: This factor reflects coverage

complexity, measuring the spatial spread of goal-relevant
objects across locations in the scene subgraph Gscene

t . A
wider spread increases the search overhead for navigation
and object grounding:

Fspatial =
∑

o∈V obj
goal

|Loc(o)|, (2)

where Loc(o) is the set of possible asset locations associated
with object o.



Task Type：Cool

Key Rule Extraction Ambiguity Constraint Experience Summary Lesson Pool

   Correct Case Library

System Prompt
Learn Location、Tools、
Action and  prerequisites.

Task Type : Cool
Task Description：move a 
cloth in shelf. Correct Case Library

System Prompt
summarize valuable 
actions or point out 
meaningless actions.

Task Failed Trajectory：
>go to cabinet 1>open the cabinet 1 
> ..........>  go to countertop 2>go to 
desk 1>end

Correct 
Case Library

System Prompt
 Follow the format of 

example, directly extract 
one lesson from the pool 

in one sentence

Lesson
Pool Task Failed Trajectory：

>go to  drawe....>go to sinkbasin 1

HARD
FUZZY TIRED FUZZY & HARD

Fuzzy 
Decision

Yes

Task: move a cloth in shelf.        
Trajectory: >go to  drawer>open the drawer(I find a 
handtowlel，handtowel is a kind of cloth.I will take it ) 
>take handtowel  from drawer>go to shelf>move 
handtowel to shelf.                            Status: FAIL                                                                                            

Task: move a cool apple to desk                       
Trajectory: >go to  countertop>take apple  from 
countertop >go to fridge>open fridge>take cup from 
fridge (nothing happens,I can't move the items in 
fridge,I can't cool by fridge)>go to desk> move apple 
to desk                                            Status: FAIL   

Task: move a clean cloth to desk                       
Trajectory: >go to  drawer>open the drawer(I find a 
handtowlel，handtowel is a kind of cloth)>take 
handtowel  from drawer>go to  sinkbasin 1(I need 
brush toclean)>.........                             Status: FAIL

Task:  move two soapbar to garbagecan.                      
Trajectory: >go to cabinet 1>open the cabinet 1>go to 
cabinet 2> open the cabinet 2>......> go to countertop 1> 
go to countertop 2>go to desk 1>end        
                       Status: FAIL，Exceeding the step limit 

Output  Case Key Rule ：
Location is fridge ；No tools 
required；The cool action 
can be  executed directly 
without any prerequisites.

Output  Ambiguity  Warn：
handtowel is not cloth that you 
need,You should strictly follow 
the items you need to take as 
specified in the task.

Output  Exp Summary：
soapbar not on table 1, 
countertop 1....... You no longer 
need to search for these places.

Output  Extract Lesson：
You need find and take cloth,then
go to sinkbasin 1,directly clean 
cloth,go to desk,move it to desk

 Next Trajectory: >go to  countertop>take apple 
from countertop>go to fridge>cool apple with fridge 
>move apple to desk                 Status: SUCCESS

 Next Trajectory: >go to  drawer>open the drawer
(I find a handtowel,I don't need it )>go to bed (I find 
cloth .I need take it)>take cloth  from bed>go to 
shelf>move cloth to shelf.          Status:SUCCESS                                                                                                                         

 Next Trajectory: > directly go to  toilet 1 >take soapbar 
from toilet 1>go to garbagecan 1>move soapbar to 
garbagecan 1                     
                                                      Status: SUCCESS   

 Next Trajectory: >go to  drawer>open the drawer >go  
to bed >take cloth from bed>go to sinkbasin >clean cloth 
>go to desk >move cloth to desk        
                                                         Status: SUCCESS

Fig. 3. The four modules of the Reflection Toolkit: (a) Key Rule Extraction, (b) Ambiguity Constraint, (c) Experience Summary, and (d) Lesson Pool. Each
panel illustrates input–output format, core logic, and a minimal example, showing how the toolkit supports adaptive correction for robotic task planning.

c) Interaction factor Finter: This factor captures neigh-
borhood complexity, reflecting the functional richness of
assets required by the goal. It is approximated by the degree
of asset nodes in terms of available affordances:

Finter =
∑

a∈V asset
goal

|Aff(a)|, (3)

where Aff(a) denotes the set of affordances of asset a.
d) Structure factor Fstruct: Beyond local descriptors,

this factor encodes high-order structural complexity of
the full diagnostic graph. We adopt Graph2Vec [27], which
aggregates rooted subgraph features into a continuous em-
bedding:

Fstruct = Graph2Vec(Gt) ∈ Rd. (4)

Finally, all factors are concatenated into a
single representation of task complexity: xt =
[Fdepend, Fspatial, Finter, Fstruct]. The hand-crafted factors
emphasize interpretable local topology, such as dependency
depth, spatial span, appliance interactions. In contrast,
Graph2Vec provides a global structure embedding of the
entire Diagnostic Graph, capturing higher-order structures
beyond manual design.

C. Reflection Toolkit

The Reflection Toolkit is a collection of modular functions
T = {T1, T2, . . . , TK}, each sharing a common interface:
given the diagnostic graph, trajectory, and feedback, a tool
outputs a reflection snippet from a particular perspective. It is
worth noting that our focus is not on the design of individual
tools but on the overall framework that integrates them.

At trial t, the routing policy πθ(xt) selects one or multiple
tools based on task complexity. The selected tool outputs are
order-invariant and concatenated into the final reflection text:

srt = Concat
(
{T (Gt, τt, rt,mem) | T ∈ πθ(xt)}

)
, (5)

which is injected back to guide the next trial. In our im-
plementation, T consists of four representative tools, each of
which has been validated in previous studies [7]: (1) Key Rule
Extraction, abstracting preconditions and execution rules; (2)
Ambiguity Constraint, detecting and restricting invalid oper-
ations; (3) Experience Summary, retaining effective actions
from past trajectories; (4) Lesson Pool, leveraging corrected

cases for deeper reflection. Figure 3 illustrates these tools,
and extended implementation notes are available on our
project webpage.

D. Routing Policy network

A key challenge in reflection is mismatching strategies to
task structure, which can lead to redundant effort and error
accumulation. To address this, we design a Routing Policy
πθ parameterized by θ, which maps the task representation
xt into reflection decisions:

πθ(xt) = Mask{Head(W2 σ(W1 xt))} , (6)

where W1,W2 are trainable weight matrices, σ is a nonlin-
earity (SiLU), Head(·) projects into multiple action heads,
and Mask(·) applies feasibility constraints. The multi-head
outputs specify reflection actions—binary switches or cate-
gorical choices—determining which tools are activated and
how reflection budgets are allocated. At inference, feasibility
masks suppress inconsistent or overly costly configurations
under low-complexity.

E. Offline Self-Supervised Training

Direct supervision from human labels is undesirable since
tool choices can be biased and expensive to annotate, while
reinforcement learning requires costly online interactions
with slow convergence. Instead, we adopt an offline self-
supervised scheme in which the Routing Policy learns
from pseudo-labels automatically derived from execution
outcomes.

For each task, a small candidate set of reflection strategies
A is sampled and executed, where each strategy a ∈ A
produces a success indicator S(a) ∈ {0, 1} and a token cost
cost(a) ∈ R+. A pseudo-label a⋆ is then selected by trading
off accuracy and efficiency:

a⋆ = argmax
a∈A

[
S(a)− α cost(a)

]
, (7)

where α > 0 is a weight controlling the trade-off. The
Routing Policy, parameterized by θ, is trained to predict a⋆

with a loss that combines classification and cost penalty:

L(θ) = CE
(
πθ, a

⋆
)
+ η Ea∼πθ

[cost(a)] , (8)

where πθ is the predicted distribution over strategies, CE
is the cross-entropy loss, Ea∼πθ

[·] denotes expectation with



TABLE I
SUCCESS RATE OF DYREF AND BASELINES ACROSS VARIOUS ALFWORLD TASKS. OUR DYREF OUTPERFORMS OTHER METHODS.

Method Success Rate(%)

Put Clean Heat Cool Examine SR @1 SR @3 ALL SR

Model : GPT 4o Series

Plan-Only 64.5 66.6 30.0 62.5 26.6 61.9 67.9 68.7
Reason-Only 86.3 87.5 77.1 93.3 58.3 80.6 82.8 82.8
Reason-Reflect 84.9 84.3 80.0 93.3 58.3 80.6 82.8 83.6
Reason-Flex Reflect 91.4 90.0 93.5 100.0 63.6 82.1 90.3 91.0
Ours 100.0 90.0 95.7 100.0 83.3 85.8 93.3 94.8

Model : Gemini 2.5 Series

Plan-Only 82.9 71.0 82.6 90.5 66.7 73.9 76.9 79.1
Reason-Only 90.2 80.6 79.2 95.7 55.6 76.1 82.1 83.6
Reason-Reflect 97.6 80.6 78.3 90.5 66.7 76.1 81.3 85.1
Reason-Flex Reflect 100.0 87.1 60.9 90.5 88.9 78.4 85.8 87.3
Ours 100.0 93.5 91.3 100.0 83.3 91.0 93.3 94.8

TABLE II
FLEXIBILITY AND EFFICIENCY OF DIFFERENT REFLECTION METHODS. OUR DYRE DEMONSTRATES SIGNIFICANTLY HIGHER FLEXIBILITY AND

EFFICIENCY.

Methods Efficiency Flexibility

Costref @1 ↓ Costref @4 ↓ Raterev(%) @1 ↑ Raterev(%) @4 ↑ R ↑ CV(%) ↑
Model : GPT 4o Series

Reason-Reflect 480.3 953.6 38.0 47.6 175 22.4
Reason-Flex Reflect 453.1 570.4 42.8 71.4 197 18.2
Ours 260.3 408.8 66.1 87.5 268 25.4

Model : Gemini 2.5 Series

Reason-Reflect 909.0 913.7 42.9 64.3 207 23.5
Reason-Flex Reflect 366.3 558.3 48.2 69.6 237 21.5
Ours 219.6 325.1 76.8 87.5 258 31.4

respect to πθ, and η > 0 is a coefficient that weights the
expected cost term. This objective enables the Routing Policy
to adaptively balance task success and reflection cost from
data without additional supervision.

V. EXPERIMENTS

In this section, our framework is evaluated through exper-
iments conducted in the common household environment of
AlfWorld [28]. Furthermore, real-world robotic experiments
are performed to validate the practicability of our method in
physical environments. The proposed approach demonstrates
significant advantages in both overall performance and spe-
cific metrics.

A. Experimental Setup

Environment and Dataset. We conduct our evaluation in
AlfWorld, a text-based virtual household environment that
includes five task categories: Put, Clean, Heat, Cool and
Examine. Our experiments cover the full dataset of 134 tasks
across these categories, each performed over five epochs of
planning trials to ensure robust and generalizable results.

Compared methods. We benchmark our approach against
four categories of representative baselines in robotic plan-

ning and reflection: 1. Plan-Only: ProgPrompt [13], which
directly generates action sequences from textual task descrip-
tions based on the principle of In-Context Learning [29]
principle. 2. Reason-Only: ReAct [1], which integrates rea-
soning with action generation by using LLMs to iteratively
decide the next step. 3. Reason-Reflect: Reflexion [4], which
extends ReAct by enabling reflection on failures through
environmental feedback, thereby improving subsequent plan-
ning. 4. Reason-Flex Reflect: FCRF [7], which integrates
valuable historical experiences and lessons learned from
failures, enables LLMs to flexibly self-reflect based on task
complexity.

Metrics. We evaluate the methods from three aspects:

• Success Rate measures the overall effectiveness of
reflection and planning by calculating the proportion of
tasks successfully completed at the end of the trial.

• Efficiency is assessed through two indicators:

– Reflection Cost (Costref ): the average number
of tokens consumed during reflection, defined as
Costref = Costall

Ecorrected
, Where Costall denotes the

total number of tokens consumed across all exper-
imental rounds, and Ecorrected denotes the number



Reflection Tool Selection : Experience Summary

START move a cool cup to the diningtable END

Reflection Tool
Selection:

Key Rule Extraction

Key Rule：
Location is  fridge.No

additional tools are required.
Then cool it directly  without

any prerequisites.

Tasksuccess!

Task Failed!
steps exhausted

Failed Trajectory History：
go to cuntertop1
>don't find the cup.
go to countertop2
>don't find the cup.
go to drawer 1
>don't find the cup
go to diningtable
>find the cup

Our
DyRef

Direct to
destination

Correct fridge     
interaction

Success！

Failed
Trajectory

Successfully
found the cup,
but it took too

much time!

Incorrect fridge   
interaction

Error！

System Prompt：
By aligning with the task goal,

summarize the valuable actions
gained from past experience.

Task Dscription：
This is a freezing task involving   
the use of a fridge.

Experience Summary:
The cup is on the dining table.

take cup from diningtablego to diningtable finish cooling cupopen fridgego to fridge

take cup from diningtable   go to diningtablego to countertop 1 go to draw and open it     go to countertop 2go to fridge open fridge & take items  put cup

Trial

Fig. 4. In an AlfWorld example, DyRef corrects a failed trajectory by selecting a combined reflection strategy of experience summarization and key rule
extraction, utilizing task, environmental, and historical execution data.

of tasks corrected through reflection across all
episodes.

– Revision Rate (Raterev): the proportion of errors
corrected through reflection, defined as Raterev =
Ecorrected

Einitial
,Where Einitial represents the number of

tasks that failed during the initial planning phase.
• Flexibility evaluates the adaptability of reflection length

to task complexity, quantified by:
– Range (R): The difference between the maximum

number of tokens in a single reflection and the
minimum number of tokens in a single reflection.

– Coefficient of Variation (CV): normalized disper-
sion, defined as CV =

Costref,STD
Costref,AVE

B. Results

The main results are presented in Table I and Table II.
To balance performance and computational cost, we use
the official GPT-4o Series and Gemini 2.5 Series mod-
els in all experiments. Main results show: 1. Our DyRef
achieved a 100% success rate in both the Put and Cool
tasks. Compared to the baseline methods, its success rate
improved by over 30% in examine tasks and by over 4%
in the overall performance, demonstrating a significantly
enhanced reflexion capability, as detailed in Table I. This
improvement stemmed from its mechanism of analyzing
execution failures, dynamically selecting reflection strate-
gies based on task complexity, and effectively integrating
insights from both successful and failed trajectories. Fig-
ure 4 illustrates an application of DyRef to a long-term
task. 2. No significant correlation was observed between the
length of reflection-generated tokens and their subsequent
error-correction capability. Furthermore, empirical evidence
indicated that compromised self-reflection flexibility and
efficiency were associated with diminished success rates.
These findings underscore the necessity of our research
focus and validate the rationality of the metrics defined in
our study. 3. Among all evaluated methods, the Plan-Only
approach, which utilized simple planning based solely on
input and context, achieved the lowest success rate. The
Reason-Only and Reason-Reflect methods performed better.

Although Reason-Reflect generally outperformed Reason-
Only, it underperformed in certain specific tasks. This result
suggests that self-reflection with fixed templates does not
invariably lead to performance improvement. 4. In contrast to
previous methods, DyRef dynamically adjusted the volume
of reflection across a wider range with higher variability,
as shown in Table II. The value of R increased by over
8.9%, and the value of CV rose by more than 39.6%,
demonstrating its superior flexibility. DyRef also exhibited
a higher revision rate and a lower reflection cost in the
efficiency metrics, indicating robust error-correction capa-
bility and cost-effectiveness. Specifically, the Raterev in-
creased by more than 22.5%, while the Costref decreased by
more than 28.4%. These results show that DyRef adaptively
allocated computational resources, effectively learned from
all execution outcomes, and achieved excellent overall cost-
effectiveness.

VI. ANALYSIS AND DISCUSSION

A. Episode Analysis of Self-Reflection Process

We conducted an episode analysis to investigate the
mechanisms and manifestations of the self-reflection process
(Figure 6). The LLM was instructed to replan erroneous
long-horizon tasks across five experimental rounds, and the
completion status was observed in each episode. Key obser-
vations included the following: 1. As shown in the left figure,
DyRef outperformed all baseline methods in every episode.
The average revision rate increased by at least 22.1%, while
reflection costs decreased by at least 38.1%. These results
demonstrated the superior performance, robustness, and com-
putational efficiency of our method. 2. Across all episodes,
the Plan-Only method exhibited the lowest error-correction
performance. Reason-Only and Reason-Reflect performed
better yet showed similar results to each other. Reason-Flex
Reflect significantly improved error correction compared
to previous methods, although minimal improvement was
observed in the first reflection round, indicating that it still
had substantial room for overall enhancement. Our DyRef
achieved a 38.6% improvement in first-round error-correction
accuracy. These findings indicated that inflexible reflection
hindered error correction and increased cost. In contrast, our



light is off light is off light is on
The gripper failed to      
contact the correct        
part of the switch

Reflection Tool Selection : Experience Summary

Environment：You are in a workshop. Known locations include the counter room, monitoring room, server room, storage room, side room ， break room, Corridor 1, Corridor 2, Workstation 1, Workstation 2, Workstation 3, and Workstation 4.

Reflection Tool Selection : Key Rule Extraction

Key Rule：
Location is room.No
additional tools are
required. Before and
after turning off the

lights, look up to take a
photo and check the
status of the lights.

Second
Trajectory

All lights have
been

turned off.

Success！

First
Trajectory

Failure to turn  
off all lights

Error！

light is off

6

Task Failed!
one light was left on.

15

light is on

14

First Trajectory History：
Go to monitoring room
>OK
Turn up & Take photo
> light is off
Go to server room
>OK
Turn up & Take photo
> light is off
Go to storage room
>OK
Turn up & Take photo
> light is off

System Prompt:
By aligning with the task goal, summarize the valuable

actions gained from past experience.

Correct Trajectory：

Go to monitoring room        
>OK
Turn up & Take photo          
>light is on
turn off
>OK

Turn up & Take photo          
> light is off
Success！

Task ：Turn off the lights in all rooms

Experience Summary:
The lights in the monitoring room, server   

room, and storage room are turned off.

Task Dscription：
This i s a turn off
task involving
interaction logic of  
the light fixture

light is off

light is on

light is offlight is offlight is on

go to counter room turn up & take photo

go to server room go to counter roomturn up & take photogo to monitoring room turn up & take phototurn up & take photo go to storage room turn up & take photo

turn up & take photo

turn off light

turn up & take phototurn off light turn up & take photo

go to side roomgo to break room turn up & take photo

go to side room

turn off lightturn up & take photo

go to break room

turn off light

Task success!

10 11 12

4 5

82 3 741

21

5 9 13

73 86

Fig. 5. Example of a failed task successfully refined using our framework.

0 

200 

400 

600 

800 

1,000 

1 2 3 4

R
ef

le
ct

io
n 

C
os

t

Episode

Reason-Reflect

Reason-Flex Reflect

DyRef

0%

20%

40%

60%

80%

100%

1 2 3 4

%
R

ev
is

io
n 

R
at

e

Episode

Plan-Only
React
Reason-Reflect
Reason-Flex Reflect
DyRef

Fig. 6. Result of revision and reflection cost with different episodes.
Our DyRef outperforms in all episodes, converges more quickly and has
a significant lower cost.

TABLE III
ABLATION OF MODULES OF DYREF IN ALFWORLD TASKS. ALL

DESIGNED HIERARCHICAL GRAPH CONTRIBUTE TO THE

PERFORMANCE.

Method SR (%) R ↑ CV ↑ Costref ↓ Raterev ↑
SR@1 SR@All

Ours full 85.8 94.8 268 25.4 408.8 87.5
w/o Struct 83.6 89.6 198 24.7 360.7 75.0
w/o Depend 78.4 82.9 208 25.1 775.3 58.9
w/o Interact 72.3 83.6 272 23.6 823.2 60.7
w/o Spatial 76.9 85.1 258 23.6 810.4 64.3

DyRef effectively utilized examples and lessons derived from
failures to achieve more effective and cost-efficient reflection.

B. Ablation Study

To demonstrate the effectiveness of each feature and
explore their interrelationships, we conducted ablation stud-
ies on the AlfWorld dataset, with results summarized in
Table III. In the w/o Dependence Factor configuration, the
overall revision rate was reduced by 48.6%, the success rate
decreased by 11.9%, and the R value dropped by 28.8%
due to the neglect of task sub-objectives. Under the w/o
Spatial Factor setting, the reflection coefficient of variation
decreased by 7.6% as a result of unaccounted environmental
complexity. For the w/o Interaction Factor condition, the
first-trial success rate declined by 18.7%, while the revision
cost increased by 50.3% owing to ignored interaction logic
complexity. In the w/o Structure Factor scenario, where
the complexity of the diagnostic graph was disregarded,
reflection costs were reduced by 11.8% compared to the
complete model. However, the R value decreased by 26.1%
and the revision rate dropped by 14.3%, indicating a trade-

off in reflection flexibility and efficiency. The efficiency and
flexibility of the method decreased when each feature was
ablated, leading to a reduction in the overall success rate.
Overall, the results of the ablation study met expectations
across all metrics, demonstrating the contribution of each
feature within our framework and confirming the rationality
of our feature selection.

C. Real-World Robotic Experiment

We developed a plan-reflect loop system based on
React-DyRef to validate its practical application poten-
tial. A robot equipped with a robotic arm and a binoc-
ular camera system was employed for the experiments.
The robotic arm featured parallel grippers and a wrist-
mounted camera, and was mounted on a mobile base.
The implemented functions included Put(object, location),
Grab(object), Move to(location), Take picture(), Turn off(),
and Turn on(). The robot’s task execution was designed with
a maximum of 10 steps per task.

The system was tested on complex long-sequence tasks in
real-world scenarios, such as turning off all room lights. The
robot was required to inspect the status of all room lights on
the map and ensure they remained off. Through multiple test
iterations, our framework demonstrated high reliability and
the capability to correct errors swiftly and accurately. After
20 repeated experiments, the first-pass reflection correction
rate reached 90%. Additional details and demonstrations of
the real-world scenario experiments are available on our
project website and in supplementary videos.

VII. CONCLUSIONS

We presented DyRef, a dynamic reflection framework that
diagnoses task complexity through a Diagnostic Graph and
routes tasks to tailored strategies from a Reflection Toolkit.
This design moves beyond fixed heuristics by aligning
reflection level with the structural demands of each task.
Experiments in AlfWorld and on real robots show that DyRef
improves planning efficiency, raising success rates while
reducing redundant reflections. These results highlight the
importance of complexity-aware reflection in scaling LLM-
based planners to long-horizon tasks.



REFERENCES

[1] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik
Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629, 2022.

[2] Jiatao Zhang, Lanling Tang, Yufan Song, Qiwei Meng, Haofu Qian,
Jun Shao, Wei Song, Shiqiang Zhu, and Jason Gu. Fltrnn: Faithful
long-horizon task planning for robotics with large language models.
In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pages 6680–6686. IEEE, 2024.

[3] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang,
Defu Lian, Yasheng Wang, Ruiming Tang, and Enhong Chen. Un-
derstanding the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716, 2024.

[4] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. Reflexion: Language agents with
verbal reinforcement learning. Advances in Neural Information
Processing Systems (NeurIPS), 36:8634–8652, 2023.

[5] Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin
Liu, and Gao Huang. Expel: Llm agents are experiential learners. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
volume 38, pages 19632–19642, 2024.

[6] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi
Zhang, Jiayi Yuan, Hongyi Liu, Andrew Wen, Shaochen Zhong, Hanjie
Chen, et al. Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419, 2025.

[7] Yufan Song, Jiatao Zhang, Zeng Gu, Qingmiao Liang, Tuocheng Hu,
Wei Song, and Shiqiang Zhu. Fcrf: Flexible constructivism reflection
for long-horizon robotic task planning with large language models.
arXiv preprint arXiv:2507.14975, 2025.

[8] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns
when to think. arXiv preprint arXiv:2505.13379, 2025.

[9] Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect: Summarizing robot
experiences for failure explanation and correction. In Conference on
Robot Learning (CoRL), pages 3468–3484. PMLR, 2023.

[10] Zehui Ling, Deshu Chen, Hongwei Zhang, Yifeng Jiao, Xin Guo, and
Yuan Cheng. Fast on the easy, deep on the hard: Efficient reasoning
via powered length penalty. arXiv preprint arXiv:2506.10446, 2025.

[11] Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi
Fan, Tao Chen, De-An Huang, Ekin Akyürek, Anima Anandkumar,
et al. Pre-trained language models for interactive decision-making.
Advances in Neural Information Processing Systems (NeurIPS),
35:31199–31212, 2022.

[12] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman,
Brian Ichter, Pete Florence, and Andy Zeng. Code as policies:
Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages
9493–9500. IEEE, 2023.

[13] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei
Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh
Garg. Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 11523–11530. IEEE, 2023.

[14] Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang.
Adaplanner: Adaptive planning from feedback with language mod-
els. Advances in Neural Information Processing Systems (NeurIPS),
36:58202–58245, 2024.

[15] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar
Cortes, Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakr-
ishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding
language in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

[16] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler,
Wei-Lun Chao, and Yu Su. Llm-planner: Few-shot grounded planning
for embodied agents with large language models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 2998–3009, 2023.

[17] Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi, Jun Takamatsu,
and Katsushi Ikeuchi. Chatgpt empowered long-step robot control in
various environments: A case application. IEEE Access, 2023.

[18] Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin,
and Xiaofei He. Automanual: Generating instruction manuals by
llm agents via interactive environmental learning. arXiv preprint
arXiv:2405.16247, 2024.

[19] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths,
Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate
problem solving with large language models. Advances in Neural
Information Processing Systems (NeurIPS), 36:11809–11822, 2023.

[20] Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen,
Guiyang Hou, Zeqi Tan, Peng Li, Yueting Zhuang, and Weiming
Lu. Agent-pro: Learning to evolve via policy-level reflection and
optimization. arXiv preprint arXiv:2402.17574, 2024.

[21] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang,
and Yu-Xiong Wang. Language agent tree search unifies rea-
soning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

[22] Saeid Amiri, Kishan Chandan, and Shiqi Zhang. Reasoning with scene
graphs for robot planning under partial observability. IEEE Robotics
and Automation Letters, 7(2):5560–5567, 2022.

[23] Christopher Agia, Krishna Murthy Jatavallabhula, Mohamed Khodeir,
Ondrej Miksik, Vibhav Vineet, Mustafa Mukadam, Liam Paull, and
Florian Shkurti. Taskography: Evaluating robot task planning over
large 3d scene graphs. In Conference on Robot Learning (CoRL),
pages 46–58. PMLR, 2022.

[24] Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jataval-
labhula, Bipasha Sen, Aditya Agarwal, Corban Rivera, William Paul,
Kirsty Ellis, Rama Chellappa, et al. Conceptgraphs: Open-vocabulary
3d scene graphs for perception and planning. In 2024 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 5021–
5028. IEEE, 2024.

[25] Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua B Tenenbaum, Tomás
Lozano-Pérez, and Leslie Pack Kaelbling. Planning with learned object
importance in large problem instances using graph neural networks. In
Proceedings of the AAAI conference on artificial intelligence (AAAI),
volume 35, pages 11962–11971, 2021.

[26] Ruidong Ma, Yanan Liu, Erich W Graf, and John Oyekan. Applying
vision-guided graph neural networks for adaptive task planning in
dynamic human robot collaborative scenarios. Advanced Robotics
(AR), 38(23):1690–1709, 2024.

[27] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkate-
san, Lihui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec:
Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

[28] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk,
Adam Trischler, and Matthew Hausknecht. Alfworld: Aligning text
and embodied environments for interactive learning. arXiv preprint
arXiv:2010.03768, 2020.

[29] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li,
Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. A survey
on in-context learning. arXiv preprint arXiv:2301.00234, 2022.


	INTRODUCTION
	RELATED WORKS
	LLMs for Task Planning
	Reflection for Robotic Task Planning
	Graph-based Representations for Task Reasoning

	PRELIMINARIES
	Planning Framework
	Self-Reflection Process in LLM-based Planning

	METHODOLOGY
	Diagnostic Graph
	Graph-based Complexity Factors
	Reflection Toolkit
	Routing Policy network
	Offline Self-Supervised Training

	EXPERIMENTS
	Experimental Setup
	Results

	ANALYSIS AND DISCUSSION
	Episode Analysis of Self-Reflection Process
	Ablation Study
	Real-World Robotic Experiment

	CONCLUSIONS
	References

